
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Analysis of Algorithms

University of North Texas

Slides borrowed/adapted from Prof. Yung Li from KAIST

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

AlgorithmInput Output

• An algorithm is a step-by-step procedure for solving a
problem in a finite amount of time.

What Is An Algorithm?

o Input: Zero or more quantities (externally produced)

o Output: One or more quantities

o Definiteness: Clarity, precision of each instruction

o Finiteness: The algorithm has to stop after a finite (may be
very large) number of steps

o Effectiveness: Each instruction has to be basic enough and
feasible

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What are we going to learn?

• Need to say that some algorithms are “better”
than others

• Criteria for evaluation

o Structure of programs (simplicity, elegance, object-
oriented, etc.)

o Running time

o Memory space

o What else???

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Running Time

• Most algorithms transform input
objects into output objects.

• The running time of an algorithm
typically grows with the input size.

• Average-case running time is often
difficult to determine.

o Why?

• We focus on the worst case running
time.

o Easier to analyze

o Crucial to applications such as games,
finance and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Average Case vs. Worst Case

• The average case

running time is harder
to analyze because you

need to know the

probability distribution

of the input.

• In certain apps (air

traffic control, weapon

systems, etc.), knowing
the worst case time is

important.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Experimental Approach

• Write a program
implementing the algorithm

• Run the program with
inputs of varying size and
composition

• Use a wall clock to get an
accurate measure of the
actual running time

• Plot the results

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Limitations of Experiments

• It is necessary to implement the algorithm, which
may be difficult and often time-consuming

• Results may not be indicative of the running time on
other inputs not included in the experiment.

• In order to compare two algorithms, the same
hardware and software environments must be used

o Restrictions

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Theoretical Analysis

• Uses a high-level description of the algorithm
instead of an implementation

• Characterizes running time as a function of the
input size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm
independent of the hardware/software
environment

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

The Random Access Machine (RAM) Model

• A CPU

• A potentially unbounded bank of
memory cells, each of which can
hold an arbitrary number or
character

• Memory cells are numbered and
accessing any cell in memory takes
unit time

0
1
2

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pseudocode

• High-level description
of an algorithm
(independent of
programing languages)

• More structured than
English prose

• Less detailed than a
program

• Preferred notation for
describing algorithms

• Hides program design
issues

Algorithm arrayMax(A, n)
 Input array A of n integers
 Output maximum element of A

 currentMax  A[0]
 for i  1 to n − 1 do
 if A[i]  currentMax then
 currentMax  A[i]
 return currentMax

Example: find the max
element of an array

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pseudocode Details

• Control flow

o if … then … [else …]

o while … do …

o repeat … until …

o for … do …

o Indentation replaces braces

o

• Method declaration

Algorithm method (arg [, arg…])

 Input …

 Output …

• Method call
var.method (arg [, arg…])

• Return value

return expression

• Expressions

 Assignment
(like = in C, C++)

= Equality testing
(like == in C, C++)

n2 Superscripts and other
mathematical formatting
allowed

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Seven Important Functions

• Seven functions that
often appear in algorithm
analysis:

o Constant  1

o Logarithmic  log n

o Linear  n

o N-Log-N  n log n

o Quadratic  n2

o Cubic  n3

o Exponential  2n

• In a log-log chart, the
slope of the line
corresponds to the growth
rate of the function

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Primitive Operations

• Basic computations performed
by an algorithm

• Identifiable in pseudocode

• Largely independent from the
programming language

• Exact definition not important
(we will see why later)

• Assumed to take a constant
amount of time in the RAM
model

• Examples:

o Evaluating an
expression

o Assigning a
value to a
variable

o Indexing into an
array

o Calling a method

o Returning from
a method

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Counting Primitive Operations

• By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n)
 # operations
 currentMax  A[0] 2

 for i  1 to n − 1 do 1+n

 if A[i]  currentMax then 2(n − 1)

 currentMax  A[i] 2(n − 1)

 { increment counter i } 2(n − 1)

 return currentMax 1

 Total 7n − 2

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Estimating Running Time

• Algorithm arrayMax executes 7n − 2 primitive
operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
 a (7n − 2)  T(n)  b(7n − 2)

• Hence, the running time T(n) is bounded by two linear
functions

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Growth Rate of Running Time

• Changing the hardware/ software environment

o Affects T(n) by a constant factor, but

o Does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an
intrinsic property of algorithm arrayMax

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Constant Factors

• The growth rate is
not affected by

o constant factors or

o lower-order terms

• Examples

o 102n + 105 is a linear
function

o 105n2 + 108n is a
quadratic function

• We consider when n is
sufficiently large

o We call this
“Asymptotic Analysis”

with constant
factors

without constant
factors

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Big-Oh Notation

• Given functions f(n)
and g(n), we say that
f(n) is O(g(n)) if there
are positive constants
c and n0 such that

 f(n)  cg(n) for n  n0

• Example: 2n + 10 is
O(n)

o 2n + 10  cn

o (c − 2) n  10

o n  10/(c − 2)

o Pick c = 3 and n0 = 10

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Big-Oh Example

• Example: the
function n2 is not
O(n)

o n2  cn

o n  c

o The above inequality
cannot be satisfied
since c must be a
constant

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0  1 such that 7n-2  c•n for n  n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0

this is true for c = 4 and n0 = 21

3 log n + 5
3 log n + 5 is O(log n)

need c > 0 and n0  1 such that 3 log n + 5  c•log n for n  n0

this is true for c = 8 and n0 = 2

• (Question) 3 log n + 5 is O(n)? Yes or No?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the growth
rate of a function

• The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows faster Yes No

f(n) grows faster No Yes

Same growth Yes Yes

Which is possible?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is O(nd),
i.e.,
1. Drop lower-order terms

2. Drop constant factors

• Use the smallest possible class of functions
o Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
o Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the
running time in big-Oh notation

• To perform the asymptotic analysis
o We find the worst-case number of primitive operations executed as a

function of the input size

o We express this function with big-Oh notation

• Example:
o We determine that algorithm arrayMax executes at most 8n − 2

primitive operations

o We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them when
counting primitive operations

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Relatives of Big-Oh

• Big-Omega

o f(n) is (g(n)) if there is a constant c > 0 and an
integer constant n0  1 such that f(n)  c•g(n) for
n  n0

• Big-Theta

o f(n) is (g(n)) if there are constants c’ > 0 and c’’ >
0 and an integer constant n0  1 such that c’•g(n) 
f(n)  c’’•g(n) for n  n0

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Intuition for Asymptotic Notation

• Big-Oh

o f(n) is O(g(n)) if f(n) is asymptotically less than or
equal to g(n)

• Big-Omega

o f(n) is (g(n)) if f(n) is asymptotically greater than
or equal to g(n)

• Big-Theta

o f(n) is (g(n)) if f(n) is asymptotically equal to g(n)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Examples (1)

f(n) is (g(n)) if there is a constant c > 0 and an integer
constant n0  1 such that f(n)  c•g(n) for n  n0

let c = 1 and n0 = 1

5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer
constant n0  1 such that f(n)  c•g(n) for n  n0

let c = 5 and n0 = 1

5n2 is (n2)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Examples (2)

f(n) is (g(n)) if it is (n2) and O(n2). we have already seen the
former, for the latter (for O(n2))recall that f(n) is O(g(n)) if
there is a constant c > 0 and an integer constant n0  1 such
that f(n) < c•g(n) for n  n0

Let c = 5 and n0 = 1

5n2 is (n2)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Examples (3)

o 2𝑛2 = 𝑂(𝑛3)

o 𝑛 = 𝑂(𝑛2)

o
𝑛

1000
 = 𝑂(𝑛2)

o 𝑛1.999 = 𝑂(𝑛2)

o 𝑛2 + 𝑛 = 𝑂(𝑛2)

o 𝑛2 + 1000𝑛 = 𝑂(𝑛2)

o 1000𝑛2 + 1000𝑛 = 𝑂(𝑛2)

• Practice on your own: find c and n0

	Slide 1
	Slide 2
	Slide 3: What are we going to learn?
	Slide 4: Running Time
	Slide 5: Average Case vs. Worst Case
	Slide 6: Experimental Approach
	Slide 7: Limitations of Experiments
	Slide 8: Theoretical Analysis
	Slide 9: The Random Access Machine (RAM) Model
	Slide 10: Pseudocode
	Slide 11: Pseudocode Details
	Slide 12: Seven Important Functions
	Slide 13: Primitive Operations
	Slide 14: Counting Primitive Operations
	Slide 15: Estimating Running Time
	Slide 16: Growth Rate of Running Time
	Slide 17: Constant Factors
	Slide 18: Big-Oh Notation
	Slide 19: Big-Oh Example
	Slide 20: More Big-Oh Examples
	Slide 21: Big-Oh and Growth Rate
	Slide 22: Big-Oh Rules
	Slide 23: Asymptotic Algorithm Analysis
	Slide 24: Relatives of Big-Oh
	Slide 25: Intuition for Asymptotic Notation
	Slide 26: Examples (1)
	Slide 27: Examples (2)
	Slide 28: Examples (3)

