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AlgorithmInput Output

• An algorithm is a step-by-step procedure for solving a 
problem in a finite amount of time.

What Is An Algorithm?

o Input: Zero or more quantities (externally produced)

o Output: One or more quantities 

o Definiteness: Clarity, precision of each instruction

o Finiteness: The algorithm has to stop after a finite (may be 
very large) number of steps

o Effectiveness: Each instruction has to be basic enough and 
feasible
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What are we going to learn?

• Need to say that some algorithms are “better” 
than others

• Criteria for evaluation

o Structure of programs (simplicity, elegance, object-
oriented, etc.)

o Running time     

o Memory space

o What else???
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Running Time 

• Most algorithms transform input 
objects into output objects.

• The running time of an algorithm 
typically grows with the input size.

• Average-case running time is often 
difficult to determine.

o Why?

• We focus on the worst case running 
time.

o Easier to analyze

o Crucial to applications such as games, 
finance and robotics
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Average Case vs. Worst Case

• The average case 

running time is harder 
to analyze because you 

need to know the 

probability distribution 

of the input.

• In certain apps (air 

traffic control, weapon 

systems, etc.), knowing 
the worst case time is 

important.
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Experimental Approach

• Write a program 
implementing the algorithm

• Run the program with 
inputs of varying size and 
composition

• Use a wall clock to get an 
accurate measure of the 
actual running time

• Plot the results
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Limitations of Experiments

• It is necessary to implement the algorithm, which 
may be difficult and often time-consuming

• Results may not be indicative of the running time on 
other inputs not included in the experiment. 

• In order to compare two algorithms, the same 
hardware and software environments must be used

o Restrictions
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Theoretical Analysis

• Uses a high-level description of the algorithm 
instead of an implementation

• Characterizes running time as a function of the 
input size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm 
independent of the hardware/software 
environment
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The Random Access Machine (RAM) Model

• A CPU

• A potentially unbounded bank of 
memory cells, each of which can 
hold an arbitrary number or 
character

• Memory cells are numbered and 
accessing any cell in memory takes 
unit time

0
1
2
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Pseudocode

• High-level description 
of an algorithm 
(independent of 
programing languages)

• More structured than 
English prose

• Less detailed than a 
program

• Preferred notation for 
describing algorithms

• Hides program design 
issues

Algorithm arrayMax(A, n)
 Input array A of n integers
 Output maximum element of A

 currentMax  A[0]
 for i  1 to n − 1 do
  if A[i]  currentMax then
   currentMax  A[i]
 return currentMax 

Example: find the max 
element of an array
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Pseudocode Details

• Control flow

o if … then … [else …]

o while … do …

o repeat … until …

o for … do …

o Indentation replaces braces

o  

• Method declaration

Algorithm method (arg [, arg…])

 Input …

 Output …

• Method call
var.method (arg [, arg…])

• Return value

return expression

• Expressions

 Assignment
(like = in C, C++)

= Equality testing
(like == in C, C++)

n2 Superscripts and other 
mathematical formatting 
allowed
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Seven Important Functions

• Seven functions that 
often appear in algorithm 
analysis:

o Constant  1

o Logarithmic  log n

o Linear  n

o N-Log-N  n log n

o Quadratic  n2

o Cubic  n3

o Exponential  2n

• In a log-log chart, the 
slope of the line 
corresponds to the growth 
rate of the function
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Primitive Operations

• Basic computations performed 
by an algorithm

• Identifiable in pseudocode

• Largely independent from the 
programming language

• Exact definition not important 
(we will see why later)

• Assumed to take a constant 
amount of time in the RAM 
model

• Examples:

o Evaluating an 
expression

o Assigning a 
value to a 
variable

o Indexing into an 
array

o Calling a method

o Returning from 
a method
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Counting Primitive Operations

• By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size

Algorithm arrayMax(A, n)
           # operations
 currentMax  A[0]        2

 for i  1 to n − 1 do       1+n

  if A[i]  currentMax then  2(n − 1)

   currentMax  A[i]  2(n − 1)

 { increment counter i }   2(n − 1)

 return currentMax         1

      Total  7n − 2



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Estimating Running Time

• Algorithm arrayMax executes 7n − 2 primitive 
operations in the worst case.  Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then
  a (7n − 2)  T(n)  b(7n − 2)

• Hence, the running time T(n) is bounded by two linear 
functions
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Growth Rate of Running Time

• Changing the hardware/ software environment 

o Affects T(n) by a constant factor, but

o Does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an 
intrinsic property of algorithm arrayMax
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Constant Factors

• The growth rate is 
not affected by

o constant factors or 

o lower-order terms

• Examples

o 102n + 105 is a linear 
function

o 105n2 + 108n is a 
quadratic function

• We consider when n is 
sufficiently large

o We call this 
“Asymptotic Analysis”

with constant 
factors

without constant 
factors
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Big-Oh Notation

• Given functions f(n) 
and g(n), we say that 
f(n) is O(g(n)) if there 
are positive constants
c and n0 such that

 f(n)  cg(n)  for n  n0

• Example: 2n + 10 is 
O(n)

o 2n + 10  cn

o (c − 2) n  10

o n  10/(c − 2)

o Pick c = 3 and n0 = 10
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Big-Oh Example

• Example: the 
function n2 is not 
O(n)

o n2  cn

o n  c

o The above inequality 
cannot be satisfied 
since c must be a 
constant 
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More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0  1 such that 7n-2  c•n for n  n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0

this is true for c = 4 and n0 = 21

3 log n + 5
3 log n + 5 is O(log n)

need c > 0 and n0  1 such that 3 log n + 5  c•log n for n  n0

this is true for c = 8 and n0 = 2

• (Question) 3 log n + 5 is O(n)? Yes or No?
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Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the growth 
rate of a function

• The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows faster Yes No

f(n) grows faster No Yes

Same growth Yes Yes

Which is possible?
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Big-Oh Rules

• If is f(n) a polynomial of degree d, then f(n) is O(nd), 
i.e.,
1. Drop lower-order terms

2. Drop constant factors

• Use the smallest possible class of functions
o Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class
o Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the 
running time in big-Oh notation

• To perform the asymptotic analysis
o We find the worst-case number of primitive operations executed as a 

function of the input size

o We express this function with big-Oh notation

• Example:
o We determine that algorithm arrayMax executes at most 8n − 2 

primitive operations

o We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them when 
counting primitive operations



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Relatives of Big-Oh

• Big-Omega

o f(n) is (g(n)) if there is a constant c > 0 and an 
integer constant n0  1 such that f(n)  c•g(n) for 
n  n0

• Big-Theta

o f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 
0 and an integer constant n0  1 such that c’•g(n)  
f(n)  c’’•g(n) for n  n0
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Intuition for Asymptotic Notation

• Big-Oh

o f(n) is O(g(n)) if f(n) is asymptotically less than or 
equal to g(n)

• Big-Omega

o f(n) is (g(n)) if f(n) is asymptotically greater than 
or equal to g(n)

• Big-Theta

o f(n) is (g(n)) if f(n) is asymptotically equal to g(n)
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Examples (1)

f(n) is (g(n)) if there is a constant c > 0 and an integer 
constant n0  1 such that f(n)  c•g(n) for n  n0

let c = 1 and n0 = 1

5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer 
constant n0  1 such that f(n)  c•g(n) for n  n0

let c = 5 and n0 = 1

5n2 is (n2)
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Examples (2)

f(n) is (g(n)) if it is (n2) and O(n2). we have already seen the 
former, for the latter (for O(n2))recall that f(n) is O(g(n)) if 
there is a constant c > 0 and an integer constant n0  1 such 
that f(n) < c•g(n) for n  n0 

Let c = 5 and n0 = 1

5n2 is (n2)



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Examples (3)

o 2𝑛2 = 𝑂(𝑛3)

o 𝑛 = 𝑂(𝑛2)

o
𝑛

1000
 = 𝑂(𝑛2)

o 𝑛1.999 = 𝑂(𝑛2)

o 𝑛2 + 𝑛 = 𝑂(𝑛2)

o 𝑛2 + 1000𝑛 = 𝑂(𝑛2)

o 1000𝑛2 + 1000𝑛 = 𝑂(𝑛2)

• Practice on your own: find c and n0
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